If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-24x-356=0
a = 4; b = -24; c = -356;
Δ = b2-4ac
Δ = -242-4·4·(-356)
Δ = 6272
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6272}=\sqrt{3136*2}=\sqrt{3136}*\sqrt{2}=56\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-56\sqrt{2}}{2*4}=\frac{24-56\sqrt{2}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+56\sqrt{2}}{2*4}=\frac{24+56\sqrt{2}}{8} $
| 4(-6+8n)=24+8n | | 1-8m^2=-7 | | 5a+2a/3=6050 | | -4-2q=-3q+2 | | 1.04-0.9h-8.88=-8.38-0.3h | | 7x+12=226 | | 4x-89=Y | | 4x-89=89 | | -1/2x6x=x | | 2.1h+4.54+8.7h=-7.94+9.5h | | 7x-4+6x-1=180 | | 24=g=45 | | -1+p=-2p^2 | | 45+g=24 | | 5(4x+1x)+12=4x-2 | | -2s-7=-6-5s-4 | | y=2+6(8) | | -2.52-6.1m=-2.3m-4.5m-6.58 | | 4y+15=57 | | 6x-7(8x-5)=6x-21 | | -9.32-8.5w=7w+4.63 | | 3/4(x=+8)=9 | | 9+8b=-9+7b+10 | | n-31(4)=2 | | -8.7u-7.09=-4.9u+2.41 | | 10x+4=4x+14 | | -10j+10=-10-8j | | 2b+4=-12-2b | | 21=y+12 | | 5.5c+1.4c+7.08=-9.52+4.9c | | 4x(x)=24 | | 7b=6b−10 |